MATH 303 – Measures and Integration Homework 2

Problem 1. Suppose \mathcal{B} is an infinite σ -algebra (on an infinite set X).

- (a) Show that \mathcal{B} contains an infinite sequence $(E_n)_{n\in\mathbb{N}}$ of pairwise disjoint sets.
- (b) Deduce that \mathcal{B} has at least the cardinality of the continuum.

Solution: (a) We will prove the following lemma to enable an inductive argument.

Lemma 1. Let C be an infinite σ -algebra on an infinite set Y, and let $E \in C$ with $\emptyset \neq E \neq Y$. Then either

$$\mathcal{C}_E = \{C \cap E : C \in \mathcal{C}\}$$

is an infinite σ -algebra on E or

$$\mathcal{C}_{Y \setminus E} = \{ C \setminus E : C \in \mathcal{C} \}$$

is an infinite σ -algebra on $Y \setminus E$.

Proof. First, let us check that C_E is a σ -algebra on E (applying the same argument to the set $Y \setminus E$ will also show that $C_{Y \setminus E}$ is a σ -algebra on $Y \setminus E$). We may write $E = Y \cap E$, so $E \in C_E$. If $B = C \cap E \in C_E$, then $E \setminus B = E \cap (Y \setminus C) \in C_E$, since C is closed under complementation. Given sets $B_n = C_n \cap E \in C_E$, we may form their union $\bigcup_{n \in \mathbb{N}} B_n = (\bigcup_{n \in \mathbb{N}} C_n) \cap E \in C_E$. Hence, C_E is a σ -algebra.

Now let us prove that one of the σ -algebras \mathcal{C}_E or $\mathcal{C}_{Y\setminus E}$ is infinite. Suppose for contradiction that \mathcal{C}_E and $\mathcal{C}_{Y\setminus E}$ are both finite. Then given any set $C\in\mathcal{C}$, we may write $C=(C\cap E)\cup(C\setminus E)$. But by assumption, there are only finitely many choices for $C\cap E$ and $C\setminus E$, so there are only finitely many such sets C. This is a contradiction, since \mathcal{C} is an infinite σ -algebra. Thus, one of the σ -algebras \mathcal{C}_E or $\mathcal{C}_{Y\setminus E}$ must be infinite.

We will now use Lemma 1 to construct the sequence $(E_n)_{n\in\mathbb{N}}$ by induction. Let $A_1\in\mathcal{B}$ be an arbitrary measurable set with $\emptyset\neq A_1\neq X$. By Lemma 1, either \mathcal{B}_{A_1} or $\mathcal{B}_{X\setminus A_1}$ is infinite. Let $E_1\in\{A_1,X\setminus A_1\}$ such that $\mathcal{B}_{X\setminus E_1}$ is infinite. Write $X_1=X\setminus E_1$ and $\mathcal{B}_1=\mathcal{B}_{X_1}$.

Suppose we have chosen pairwise disjoint sets E_1, \ldots, E_n so that for $X_n = X \setminus (E_1 \cup \cdots \cup E_n)$, the σ -algebra $\mathcal{B}_n = \mathcal{B}_{X_n}$ is infinite. We then choose $A_{n+1} \in \mathcal{B}_n$ arbitrarily with $\emptyset \neq A_{n+1} \neq X_n$ and let $E_{n+1} \in \{A_{n+1}, X_n \setminus A_{n+1}\}$ such that $\mathcal{B}_{X_n \setminus A_{n+1}}$ is infinite. Such a choice for E_{n+1} is possible by applying Lemma 1 with $Y = X_n$ and $\mathcal{C} = \mathcal{B}_n$. Put $X_{n+1} = X_n \setminus E_{n+1} = X \setminus (E_1 \cup \cdots \cup E_n \cup E_{n+1})$ and $\mathcal{B}_{n+1} = \mathcal{B}_{X_{n+1}}$. Note that E_{n+1} is disjoint from all of the sets E_1, \ldots, E_n since $E_{n+1} \subseteq X_n$.

Thus, by induction, we have constructed an infinite sequence of nonempty pairwise disjoint elements of \mathcal{B} .

(b) To show that \mathcal{B} has at least the cardinality of the continuum, it suffices to produce an injective map from $\{0,1\}^{\mathbb{N}}$ to \mathcal{B} . Let $(E_n)_{n\in\mathbb{N}}$ be the sequence from part (a). Given an infinite

binary sequence $\omega \in \{0,1\}^{\mathbb{N}}$, define

$$E_{\omega} := \bigsqcup_{n:\omega(n)=1} E_n.$$

Since the sets $(E_n)_{n\in\mathbb{N}}$ are pairwise disjoint, we have

$$E_{\omega} \triangle E_{\omega'} = \bigsqcup_{n:\omega(n) \neq \omega'(n)} E_n$$

for $\omega, \omega' \in \{0,1\}^{\mathbb{N}}$. Thus, $\omega \mapsto E_{\omega}$ is an injective map and we are done.

Problem 2. Prove that the following sets are Borel sets in \mathbb{R} :

(a) The set of points of continuity

$$C_f = \{x \in \mathbb{R} : f \text{ is continuous at } x\}$$

for an arbitrary function $f: \mathbb{R} \to \mathbb{R}$.

(b) The set of points of convergence

$$Conv = \{x \in \mathbb{R} : \lim_{n \to \infty} f_n(x) \text{ exists}\}\$$

for an arbitrary sequence of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$.

Solution: (a) Define the oscillation of f at a point $x \in \mathbb{R}$ by

$$\operatorname{osc}_{f}(x) = \lim_{\delta \to 0^{+}} \sup_{x \to \delta < y_{1}, y_{2} < x + \delta} |f(y_{1}) - f(y_{2})|$$

Note that f is continuous at a point x if and only if $\operatorname{osc}_f(x) = 0$. We claim that the set $U_{\varepsilon} = \{x \in \mathbb{R} : \operatorname{osc}_f(x) < \varepsilon\}$ is open for every $\varepsilon > 0$. Suppose $x \in U_{\varepsilon}$. Then there exists $\delta_0 > 0$ such that if $\delta \in (0, \delta_0)$, then $\sup_{x-\delta < y_1, y_2 < x+\delta} |f(y_1) - f(y_2)| < \varepsilon$. We will show $B\left(x, \frac{\delta_0}{2}\right) \subseteq U_{\varepsilon}$. Indeed, if $y \in B\left(x, \frac{\delta_0}{2}\right)$, then for any $\delta \in \left(0, \frac{\delta_0}{2}\right)$,

$$\sup_{y-\delta < y_1, y_2 < y+\delta} |f(y_1) - f(y_2)| \le \sup_{x-(\delta + \delta_0/2) < y_1, y_2 < y+(\delta + \delta_0/2)} |f(y_1) - f(y_2)| < \varepsilon.$$

Thus, U_{ε} is open, so

$$C_f = \bigcap_{n \in \mathbb{N}} U_{1/n}$$

is a G_{δ} set.

(b) We will use the fact that $\lim_{n\to\infty} f_n(x)$ exists if and only if $(f_n(x))_{n\in\mathbb{N}}$ is a Cauchy sequence. Namely,

$$C = \bigcap_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{m,k \ge N} \left\{ x \in \mathbb{R} : |f_m(x) - f_k(x)| \le \frac{1}{n} \right\}.$$

The innermost set is closed, since f_m and f_k are continuous functions for each $m, k \in \mathbb{N}$. Therefore, C is an $F_{\sigma\delta}$ set.

Problem 3. Let (X, \mathcal{B}) be a measurable space, and let $\mu : \mathcal{B} \to [0, \infty]$. Prove that μ is a measure if and only if it satisfies the following three properties:

- $\mu(\emptyset) = 0$;
- FINITE ADDITIVITY: for any disjoint sets $A, B \in \mathcal{B}$,

$$\mu(A \sqcup B) = \mu(A) + \mu(B);$$

• CONTINUITY FROM BELOW: if $E_1 \subseteq E_2 \subseteq \cdots \in \mathcal{B}$, then

$$\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n).$$

Solution: Countable additivity is stronger than finite additivity, and every measure is continuous from below by Proposition 2.15 from the lecture notes. Therefore, every measure satisfies $\mu(\emptyset) = 0$, finite additivity, and continuity from below.

Conversely, suppose $\mu(\emptyset) = 0$, and μ is finitely additive and continuous from below. We need to show that μ is countably additive. Let $(E_n)_{n \in \mathbb{N}}$ be a sequence of disjoint measurable sets. Let $E'_N = \bigsqcup_{n=1}^N E_n$. Then by finite additivity,

$$\mu(E'_N) = \sum_{n=1}^{N} \mu(E_n).$$

Moreover, $E_1' \subseteq E_2' \subseteq \ldots$, so by continuity from below,

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}E_n\right) = \mu\left(\bigcup_{N\in\mathbb{N}}E_N'\right) = \lim_{N\to\infty}\mu(E_N') = \lim_{N\to\infty}\sum_{n=1}^N\mu(E_n) = \sum_{n=1}^\infty E_n.$$

That is, μ is countably additive, so μ is a measure as desired.